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Failure of Standard Quantum Mechanics for the
Description of Compound Quantum Entitiest
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We reformulate the “separated quantum entities” theorem, i.e., the theorem that proves
thattwo separated quantum entities cannot be described by means of standard quan-
tum mechanigswithin the fully elaborated operational Geneva—Brussels approach to
guantum axiomatics, where the basic mathematical structure is that of a State Property
System. We give arguments that show that the core of this result indicates a failure
of standard quantum mechanics, and not just some peculiar shortcoming due to the
axiomatic approach to quantum mechanics itself.
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1. INTRODUCTION

We reformulate the theorem that has been proved by one of the authors (Aerts,
1981, 1982a) that shows that standard quantum mechanics cannot describe the
situation of separated quantum systems with the operational Geneva—Brussels
approach of State Property Systems. We also give arguments that show that the
result of this theorem indicates a failure of standard quantum mechanics and not
just a peculiarity of the axiomatic approach itself. To make the whole consistent
and self-contained we also reformulate in a precise way Piron’s representation
theorem in axiomatic quantum mechanics.

In standard quantum mechanics with each quantum entity corresponds a com-
plex Hilbert spacé{. A statep (we will denote states by the symbaisq, r,. . .) of
the quantum entity is described by a one-dimensional subspace (ray or unit vector)
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v(p) of H, and an observable by a self-adjoint operatorrorfvon Neumann,
1932). In particular, a yes/no observabléve will denote yes/no observables by

the symbolsy, 8, v, ...) is represented by an orthogonal projed®w) or by the
closed subspac&(«) which is the range of this projector. The answer “yes” occurs
with certainty (probability equal to 1) for a yes/no observahld and only if the

statep of the quantum entity is such thafp) C A(x), whereas the answer “no”
occurs with certainty if and only i#(p) C A(x)*. Standard quantum mechanics
focuses its description on the level of the mathematical structure of the Hilbert
space. In 1936 Birkhoff and von Neumann introduced another level of description
by focusing not on the structure of the Hilbert space itself, but on the structure of
the setP(H) of closed subspaces of this Hilbert space, where each closed subspace
A(x) e P(H) is interpreted as the “logical” proposition related to the yes/no exper-
imenta. Birkhoff and von Neumann'’s aim was to point out that the mathematical
structure of the set of quantum propositidP&+) is not that of a Boolean algebra,

as is the case for the set of propositions corresponding to a classical mechanics
entity. This focus gave birth to the research field called “quantum logic,” as the
study of the logical and mathematical properties of the set of proposiB¢h3.

More specifically Birkhoff and von Neumann remarked that it is the distributive
law between conjunction and disjunction which is not necessarily valid in quantum
logic while it is obviously valid on classical logic.

Although the problems of “quantum logic” in itself are very interesting,
Birkhoff and von Neumann, by shifting the attention?¢7) instead ofH, in-
troduced two other profound advantages. First of all the possibility to build an
operational approach to quantum mechanics, because indeed the elements that
give rise toP(H) are yes/no experiments, which are operational elements, com-
pared to the elements that give riseHdtself. And secondly, equally important,
the fact that on the level dP(H) quantum entities and classical entities can be
described within one and the same mathematical category, which is not at all
the case on the level of the state spacksiif the case of quantum mechan-
ics and the phase space in the case of classical mechanics). During the years
that followed step by step it became clear what this for quantum entities and
classical entities “common” mathematical category was. A big step ahead was
taken by the work of George Mackey immediately followed by the representa-
tion theorem of Constantin Piron. Mackey put forward a scheme where one starts
from the set of yes/no experimen® and then formulates axioms on it to ar-
rive at the standard mechanical case wh@rés related in the way explained
to P(H), the set of closed subspaces of a complex Hilbert sgaddackey,

1963), and Piron puts forward a set of axioms that “almost” do the job of bring-
ing back the general framework to standard quantum mechanics (Piron, 1964,
1976). Piron’s scheme was worked out over the years into a full operational ap-
proach (Aerts, 1981, 1982a, 1983a,b), and the mathematical category that carries
this approach was identified in detail (Aerts, 1999a,b, 2002a; A¢rs, 1999),
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and called the category of “state property systems and their morphisms,” denoted
asSP.

2. STATE PROPERTY SYSTEMS, QUANTUM
AND CLASSICAL MECHANICS

In this section we present the way in which we arrive at the structure of a
state property system, and how such a state property system, plus the necessary
axioms, gives rise to the case of standard quantum mechanics, but also to the case
of classical mechanics. For a detailed exposition we refer to Astrés. (1999)
and Aerts (2002a).

2.1. State Property Systems

We start by considering two operationally defined sets, the set of states of the
physical entity, denoted b¥ = {p, q,r, ...}, and the set of yes/no experiments
on the physical entity, denoted §y = {«, 8, v, ...}, and a relation orE x Q,
denotedp < «, expressing the physical law: “the yes/no experimegt Q gives
with certainty (probability equal to 1) the outcome ‘yes’ if the physical entity
is in statep € X.” Two yes/no experiments, 8 € Q are said to be equivalent,
and this is denoted as~ g, iff Vp € £: p<a<-p< B. Then the operational
concept of “property” related to (or tested by) a yes/no experiménintroduced
as the equivalence class for the equivalence relatiai all yes/no experiments
that test this properta. That the yes/no experimendstests the propertg is
denoted by € a, and obviously we have thatéf € a andg ~ «, theng € a,
sincea is mathematically the class of yes/no experiments equivaleat the
set of properties of the physical entity under consideration is denoted bhe
relation< on X x Q can be easily defined of x £, and forp € ¥ anda € L,

p <a means now, “the property is actual if the physical entity is in stafe”
Hence with other words, a properyis “actual” iff each yes/no experiment of its
equivalence class gives with certainty the outcome “yes.” Additionally emd

we introduce a map: £ — P(X), called the Cartan map, such that oe £ we
have*k(a) = {p|pe =, p<al* +«(@) = {p € £ | p<a}+. Hencex(a) is the

set of all states of the physical entity that make a actual. This makes it possible to
introduce a relation of “implication,” denoted, on the set of properties defined

as follows: fora, b € £ we havea < b iff k(a) C «(b). Hencea < b means that
whenever the propertyis actual for the physical entity then also the propérty
actual. It can easily be checked tkais a partial order relation of. It can also be
proven purely from the operational structure, hence without the necessity of any
axioms, that the set of properti€sof the physical entity is a complete lattice for
this partial order relation (see, for example, Aatsl, 1999).

We have now all the material available to define what is the state property
system related to the physical entity under consideration. The state property system
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is the triplet &, £, ), whereX is a set that plays the role of the set of states of
the entity,L is a complete lattice that plays the role of the set of propertiesyand
L — P(X) is a one-to-one or injective function that plays the role of the Cartan
map. We also have fofg;} € £ and | the maximal element and 0 the minimal
element of the complete lattic2 that:

k(Aig) = Nik (&) )
(1) = = @)
k(0)=¢ )

whereA g is the meet of the sét; } in the complete lattice.

Suppose we consider two state property systems( «) and &', £/, k).
The morphisms of the catego8P have been derived from a general covariance
principle (Aerts, 1999a,b; Aerest al, 1999), i.e., a morphism is a coupla,(n),
wherem is a map fromx’ to X, andn a map from£ to £, such that

m(p) € k(@<= p' € «'(n(a)) 4)

Let us see how standard quantum mechanics as well as classical mechanics
can both be fitted into this scheme. For standard quantum mechanithe set
of rays of the Hilbert spacH and. the set of closed subspacdegH ). The Cartan
map maps each closed subspace on the set of rays that are contained in this closed
subspace, and indeed (1), (2), and (3) are satisfied. For the classical dasee
phase spac and L is the set of subsetB(2) of the phase space. The Cartan
map is the identity.

We give now an account of how additional axioms can be formulated such that
the general operational formalism of state property systems leads to the quantum
mechanics and classical mechanics.

2.2. The Axioms

A physical entitysS is described by its state-property system £, «), where
¥ is a set, its elements representing the stateS,df is a complete lattice, its
elements representing the propertiesSofand « is a one-to-one map front
to P(%), satisfying (1), (2), and (3), and expressing the physical situation: “The
propertya € L is actual if the entityS is in statep € X" by p € «(a). This is the
structure that we derive from only operational aspects of the approach. The first
axiom that we introduce consists in demanding that a state is determined by the
set of properties that are actual in this state.

Axiom 1(State Determination). Fqu € X we have that
N a= A b (5)
pex(a) qex(b)
we havep = q.
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We remark that in Piron (1964, 1976), and Aerts (1981, 1982a, 1983a,b) this
axiom is considered to be satisfied a priori. It was only later that we became aware
ofthe fact that “state determination” demands an axiom and cannot be derived from
the operational content of the theory. The second axiom consists in demanding that
the states can be considered as atoms of the property lattice, where an atom of a
lattice is the smallest element of this lattice different from the minimal element 0.

Axiom 2(Atomisticity). Forp € X we have that

sp= A\ a (6)

pex(b)

is an atom of_.

Obviously these two axioms are satisfied for the two examples, classical mechanics
(2, P(R2), k) and quantum mechanick(P(H), «), that we considered. From
Axioms 1 and 2, it follows thaL is atomistic and thag is a bijection fromX to

the set of atoms of.

For the third axiom it is already very difficult to give a complete physical
interpretation. This third axiom introduces the structure of an orthocomplemen-
tation for the lattice of properties. At first sight the orthocomplementation could
be seen as a structure that plays a similar role for properties as the negation in
logic plays for propositions. But that is not a very careful way of looking at things.
We cannot go into the details of the attempts that have been made to interpret
the orthocomplementation in a physical way, and refer to Piron (1976, 1990) and
Aerts (1981, 1982a, 1983a) for those that are interested in this problem. Also in
Valckenborgh (2000, 2001), Durt and D’Hooghe (2002), Aerts (2002b), and Aerts
and Deses (2003) this problem is considered in depth.

Axiom 3(Orthocomplementation). The lattigeof properties of the physical entity
under study is orthocomplemented. This means that there exists a function’:
L such that fora, b € £ we have

@) =a Q)
a<b=Db<a (8)
arna =0 and ava =1 9)

For P(2) the orthocomplement of a subset is given by the complement of this
subset, and foP(H) the orthocomplement of a closed subspace is given by the
subspace orthogonal to this closed subspace.

The next two axioms are called the covering law and orthomodularity. There
is no obvious physical interpretation for them. They have been put forward mainly
because they are satisfied in the lattice of closed subspaces of a complex Hilbert
space.
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Axiom 4(Covering Law). The lattic&€ of properties of the physical entity under
study satisfies the covering law. This means thatfor € £ andp € £ we have

a<x<avs(p)=x=aorx=avVvs(p) (20)

Axiom 5(Orthomodularity). The orthocomplemented latticef properties of the
physical entity under study is orthomodular. This means that,fore £ we have

a<b=(baad)va=h (11)

These are the five axioms of standard quantum axiomatic. It can be shown that both
axioms, the covering law and orthomodularity, are satisfied for the two examples
P(2) andP(H) (Piron, 1964, 1976).

The two examples that we have mentioned show that both classical entities
and quantum entities can be described by the common structure of a state property
system satisfying Axioms 1, 2, 3, 4, and 5. Now we have to consider the converse,
namely how this structure leads us to classical physics and to quantum physics.

2.3. The Representation Theorem

First we show how the classical and nonclassical parts can be extracted from
the general structure, and second we show how the nonclassical parts can be
represented by so-called generalized Hilbert spaces.

Since both exampleB(2) andP(H) satisfy the five axioms, itis clear that a
theory where the five axioms are satisfied can give rise to a classical theory, as well
as to a quantum theory. It is possible to filter out the classical part by introducing
the notions of classical property and classical state. Supposesth4t k) is the
state property system representing a physical entity, satisfying Axioms 1, 2, and
3. We say that a property € L is a classical property if for alb € = we have

pekx(@ or pe«(@) (12)
We denote the set of all classical propertie€byor p € ¥ we introduce
wp)= [\ a (13)
pek(a),aeC
e = {w(p) | p € (a)} (14)

and callo(p) the classical state of the physical entity whenever it is in a state
p € X, andk. the classical Cartan map. The set of all classical states will be
denoted by2. The classical state property system corresponding \¥th( «) is

(2, C, k¢).

Again considering our two examples, it is easy to see that for the quantum
case, hence fo£ = P(H), we have no nontrivial classical properties. Indeed,
for any closed subspack € H, different from 0 andH, we have rays of{ that
are neither contained iA nor contained inA'. These are exactly the rays that
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correspond to states that are superposition states of staiesit states id\'. It is
the superposition principle in standard quantum mechanics that makes that the only
classical properties of a quantum entity are the trivial ones, represented by and
It can also easily be seen that for the case of a classical entity, descrilF{@hy
all the properties are classical properties. Indeed, consider an arbitrary property
A € P(R2), then for any singletorip} C Q representing a state of the classical
entity, we haved p} C Aor{p} C A, sinceA'is the set theoretical complement of
A. Since for the quantum case we have only two classical properties, namely 0 and
‘H, it means that there is only one classical state, nafiely is the classical state
that corresponds to “considering the quantum entity under study” and the state
does not specify anything more than that. For the classical case, every state is a
classical state It can be proven that C — P(Q2) is an isomorphism (Aerts, 1981,
1983a). This means that if we filter out the classical part and limit the description
of our general physical entity to its classical properties and classical states, the
description becomes a standard classical physical description.

Let us filter out the nonclassical part. kere © we introduce

L,={ael]|a< w} (15)
Zo ={p € Z|p € k(v)} (16)
kp,(@) =«k(@) for aelL, (17)

and we call g, L., «,,) the nonclassical components &f (£, «).

For the quantum case, hen€e= P(H), we have only one classical state
‘H, and obviouslyL,, = £. Similarly we haveX, = X. This means that the
only nonclassical component iZ( L, «) itself. For the classical case, since all
properties are classical properties and all states are classical states, we have
L, = {0, w}, which is the trivial lattice, containing only its minimal and maxi-
mal element, an&,, = {w} This means that the nonclassical components are all
trivial.

For the general situation of a physical entity describedsby/, «) it can be
shown that’,, contains no classical properties with respecEjpexcept 0 and,
the minimal and maximal element gf,, and that if &, £, «) satisfies Axioms 1,
2, 3,4, and 5, then als&(,, L, x,)V,, €  satisfy Axioms 1, 2, 3, 4, and 5 (see
Aerts, 1981, 1983a).

It is not difficult to verify that, under the assumption of Axioms 1 and 2,
S: X — X, (as defined in (6)) is a well-defined mapping that is one-to-one and
onto, X being the collection of all atoms ifi. Moreover,p € «(a) iff s(p) < a.
We can cals(p) the property state correspondingpg@nd define

' ={s(p)Ip € X} (18)
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the set of property states. It is easy to verify that if we introduce

k' L—P(2) (19)
where
«'(@) = {s(p) | p € x(a)} (20)
then
(2, L, k") = (%, L, k) (21)

when Axioms 1 and 2 are satisfied.

To see in more detail in which way the classical and nonclassical parts are
structured within the lattic€, we make use of this isomorphism and introduce the
direct union of a set of complete, atomistic, orthocomplemented lattices, making
use of this identification. Consider a sgt,v|w € 2} of complete, atomistic
orthocomplemented lattices. The direct un@p.q L, of these lattices consists
of the sequences = (a,)., such that

() < (by), & 8, < bV, € Q2 (22)
(Aw)o A (B0)y = (8w Abu), (23)
(@w)o V (bo)y = (@w V Do), (24)

@), = (&), (25)

The atoms ofV),.qL,, are of the form §,), wherea,, = p for somew; and
p € ¥,,, anda, = 0 for w # w;. It can be shown easily that &, are complete,
atomistic, orthocomplemented lattices, then @lse £, is a complete, atomistic,
orthocomplemented lattice (see for instance Aerts, 1981, 1983a).

The structure of direct union of complete, atomistic, orthocomplemented
lattices makes it possible to define the direct union of state property systems
in the case Axioms 1, 2, and 3 are satisfied. Consider a set of state property
systems E,, L., k,), Where L, are complete, atomistic, orthocomplemented
lattices and for eachy we have thatt,, is the set of atoms of,. The direct
union®), (2., L., k) of these state property systems is the state property system
(UpXe, ©uLeyw, W,k,), Wheren, X, is the disjoint union of the sets,,, ¥, L.,
is the direct union of the lattices,,, and

@wKw ((aw)w) = UyKy (aa)) (26)
The first part of a fundamental representation theorem can now be stated. For this
part it is sufficient that Axioms 1, 2, and 3 are satisfied.

Theorem 2.1. (Representation Theorem: Part 1). We consider a physical entity
described by its state property system (, ). Suppose that Axioms 1, 2, and 3
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are satisfied. Then
(2, L, k) = Qweal(Z,, Lo, k) (27)

whereQ2 is the set of classical states i (L, «), ¥, is the set of state properties,
«, the corresponding Cartan map, (s€&8) and (20)), and £, the lattice of
properties of the nonclassical componeit,( L., «,,). If Axioms 4 and 5 are
satisfied for &, £, «), then they are also satisfied fax(,,, £, «’,,) forall w € Q.

Proof: See Aerts (1981) and Aerts (1983a). O

From the previous section it follows that if Axioms 1, 2, 3, 4, and 5 are
satisfied we can write the state property syst&ing, «) of the physical entity
under study as the direct unidb,co(X,,, L., «,,) Over its classical state spae
of its nonclassical componentg, £, «,), and that each of these nonclassical
components also satisfies Axioms 1, 2, 3, 4, and 5. Additionally for each one
of these nonclassical componen ( £, «,) no classical properties except 0
andw exist. It is for these nonclassical components that a further representation
theorem can be proven such that a vector space structure emerges for each one
of the nonclassical components. To do this we rely on the original representation
theorem proved in Piron (1964).

Theorem 2.2. (Representation Theorem: Part 2). Consider the same situation
as in Theorem 1, with additionally Axioms 4 and 5 satisfied. For each nonclassical
component{x., L., «.), of which the latticeC,, is of rank greater than or equal

to four, there exists a generalized Hilbert space, that is a vector spgcewér a
division ring K,, with an involution of K,, which means a function

* 1K, = K (28)
such that for k, le K, we have:
(k)* =k (29)
k- =1*-k* (30)
and an Hermitian product on )/ which means a function
(,):V,xV, > K, (32)

such that for x, y, # V,, and ke K, we have:
(X +Kky, 2) = (X,2) + k(X, y) (32)

X, y)* = (y,X) (33)
X, X) =0=x=0 (34)
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and such that for Mc V,, we have
M+ + (MY =V, (35)

where M- = {y |y € V,, (Y, X) = 0,¥x € M} and*such a vector space is called
a generalized Hilbert space or an orthomodular vector space. And we havé that:

(Z5: Lo k) = (R(V), P(V), v) (36)

whereRR (V) is the set of rays of \P(V) is the set of biorthogonally closed sub-
spaces (subspaces that are equal to their biorthogonal) of V yandkes corre-
spond with each such biorthogonal subspace the set of rays that are contained in
it.

Proof: See Piron (1964) and Piron (1976). O

The name “generalized Hilbert space” was introduced, because it can be
shown that if the division rind<,, is taken to be the real or complex numbers, or
the quaternions, then the generalized Hilbert space becomes a Hilbert space.

3. THE FAILING AXIOMS OF STANDARD QUANTUM MECHANICS

We have introduced all that is necessary to be able to put forward the theo-
rem that has been proved regarding the failing mathematical structure of standard
quantum mechanics for the description of the joint entity consisting of two sepa-
rated quantum entities (Aerts, 1981, 1982a). Let us first explain what is meant by
separated physical entities.

3.1. What Are Separated Physical Entities?

We consider the situation of a physical ent8yhat consists of two physical
entitiesS; andS,. The definition of “separated” that has been used in Aerts (1981)
and Aerts (1982a) is the following. Suppose that we consider two experiments
ande, that can be performed respectively on the enBifyand on the entitys,
such that the joint experimergs x e, can be performed on the joint entiBcon-
sisting of S, andS,. We say that experiments ande, are separated experiments
whenever for an arbitrary stafeof Swe have thatXy, x,) is a possible outcome
for experimente; x & if and only if x; is a possible outcome fa; andx; is a
possible outcome fag,. We say tha, andS; are separated entities if and only if
all the experiments; on S, are separated from the experimegt®n S.

Let us remark thaf, andS, being separated does not mean that there is no
interaction betwee8, andS,. Most entities in the macroscopic world are separated
entities. Let us consider some examples to make this clear. The earth and the moon,
for example, are separated entities. Indeed, consider any expegptieat can be
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performed on the physical entity earth (for example measuring its position), and
any experimeng, that can be performed on the physical entity moon (for example
measuring its velocity). The joint experimegit x €, consists of performing;
ande, together on the joint entity of earth and moon (measuring the position of
the earth and the velocity of the moon at once). Obviously the requirement of
separation is satisfied. The paii(x;) (position of the earth and velocity of the
moon) is a possible outcome fey x &, if and only if x; (position of the earth) is

a possible outcome @ andx, (velocity of the moon) is a possible outcome of
&. This is what we mean when we say that the earth has positiand the moon
velocity x, at once. Clearly this is independent of whether there is an interaction,
the gravitational interaction in this case, between the earth and the moon.

Itis not easy to find an example of two physical entities that are not separated
in the macroscopic world, because usually nonseparated entities are described as
one entity and not as two. In earlier work we have given examples of nonseparated
macroscopic entities (Aerts, 1982b, 1984, 1988). The example of connected vessels
of water is a good example to give an intuitive idea of what nonseparation means.
Consider two vesselg; andV, each containing 10 L of water. The vessels are
connected by a tube, which means that they form a connected set of vessels. Also
the tube contains some water, but this does not play any role for what we want to
show. Experimene; consists of taking out water of vessél by a siphon, and
measuring the amount of water that comes out. We give the outceriiehe
amount of water coming out is greater than 10 L. Experinegiebnsists of doing
exactly the same on vessél. We give outcomex; to e, if the amount of water
comingoutis greaterthan 10 L. The joint experimgnk e, consists of performing
e; ande, together on the joint entity of the two connected vessels of water. Because
of the connection, and the physical principles that govern connected vessejs, for
and fore, performed alone we find 20 L of water coming out. This meansxhiat
a possible (even certain) outcome é&@ndx; is a possible (also certain) outcome
for e,. If we perform the joint experimerg; x €, the following happens. If there
is more than 10 L coming out of vessé] there is less than 10 L coming out of
vesselMV, and if there is more than 10 L coming out of vesggthere is less than
10 L coming out of vessél;. This means thatxg, x,) is not a possible outcome
for the joint experimene; x &. Hencee; ande, are honseparated experiments
and as a consequen¥g andV, are nonseparated entities.

The nonseparated entities that we find in the macroscopic world are entities
that are very similar to the connected vessels of water. There must be an ontological
connection between the two entities, and that is also the reason that usually the
joint entity will be treated as one entity again. A connection through dynamic
interaction, asisthe case betweenthe earth and the moon, interacting by gravitation,
leaves the entities separated. For quantum entities it can be shown that only when
the joint entity of two quantum entities contains entangled states the entities are
nonseparated quantum entities. It can be proven (Aerts, 1982b, 1984, 1988) that
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experiments are separated if and only if they do not violate Bell's inequalities. All
this has been explored and investigated in many ways, and several papers have
been published on the matter (Aerts, 1982b, 1984, 1985, 1988, 1990; Christiaens,
2002).

3.2. The Separated Quantum Entities Theorem

We are ready now to state the theorem about the impossibility for stan-
dard quantum mechanics to describe separated quantum entities (Aerts, 1981,
1982a).

Theorem 3.3. (Separated Quantum Entities Theorem). Suppose that S is a phys-
ical entity consisting of two separated physical entitiesusd $. Let us suppose
that Axioms 1, 2, and 3 are satisfied and call, (C, ) the state property system
describing S, andX;, L1, k1) and (X2, Lo, k2) the state property systems describ-
ing § and $. If the fourth axiom is satisfied, namely the covering law, then one
of the two entities Sor S is a classical entity, in the sense that one of the two
State property system&(, L1, x1) or (X2, L2, k2) contains only classical states
and classical properties. If the fifth axiom is satisfied, namely weak modularity,
then one of the two entitieg 8r S is a classical entity, in the sense that one of
the two state property systen®s,( L1, k1) or (X2, L2, k2) contains only classical
states and classical properties.

Proof: See Aerts 1981, 1982a. O

The theorem proves that two separated quantum entities cannot be described by
standard quantum mechanics.

A classical entity that is separated from a quantum entity and two separated
classical entities do not cause any problem, but two separated quantum entities
need a structure where neither the covering law nor weak modularity are satisfied.

One of the possible ways out is that there would not exist separated quantum
entities in nature. This would mean that all quantum entities are entangled in some
way or another. If this is true, perhaps the standard formalism could be saved. Let
us remark that even standard quantum mechanics presupposes the existence of
separated quantum entities. Indeed, if we describe one quantum entity by means
of the standard formalism, we take one Hilbert space to represent the states of this
entity. In this sense we suppose the rest of the universe to be separated from this
one quantum entity. If not, we would have to modify the description and consider
two Hilbert spaces, one for the entity and one for the rest of the universe, and the
states would be entangled states of the states of the entity and the states of the
rest of the universe. But, this would mean that the one quantum entity that we
considered is never in a well-defined state.
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It would mean that the only possibility that remains is to describe the whole
universe at once by using one huge Hilbert space. It goes without saying that
such an approach will lead to many other problems. Another, more down to earth
problem is, that in this one Hilbert space of the whole universe also all classical
macroscopical entities have to be described. But classical entities are not described
by a Hilbert space. If the hypothesis that we can only describe the whole universe
at once is correct, it would anyhow be more plausible that the theory that does
deliver such a description would be the direct union structure of different Hilbert
spaces. But if this is the case, we anyhow are already using a more general theory
than standard quantum mechanics. So we can as well use the still slightly more
general theory, where Axioms 4 and 5 are not satisfied, and make the description
of separated quantum entities possible.

All this convinces us that the shortcoming of standard quantum mechan-
ics to be able to describe separated quantum entities is really a shortcoming of
the mathematical formalism used by standard quantum mechanics, and more no-
tably of the vector space structure of the Hilbert space used in standard quantum
mechanics.
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