
P1: JLS

International Journal of Theoretical Physics [ijtp] pp1166-ijtp-484396 April 28, 2004 4:56 Style file version May 30th, 2002

International Journal of Theoretical Physics, Vol. 43, No. 1, January 2004 (C© 2004)

Failure of Standard Quantum Mechanics for the
Description of Compound Quantum Entities1

Diederik Aerts2,3 and Frank Valckenborgh2

Received April 9, 2003

We reformulate the “separated quantum entities” theorem, i.e., the theorem that proves
that two separated quantum entities cannot be described by means of standard quan-
tum mechanics, within the fully elaborated operational Geneva–Brussels approach to
quantum axiomatics, where the basic mathematical structure is that of a State Property
System. We give arguments that show that the core of this result indicates a failure
of standard quantum mechanics, and not just some peculiar shortcoming due to the
axiomatic approach to quantum mechanics itself.
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1. INTRODUCTION

We reformulate the theorem that has been proved by one of the authors (Aerts,
1981, 1982a) that shows that standard quantum mechanics cannot describe the
situation of separated quantum systems with the operational Geneva–Brussels
approach of State Property Systems. We also give arguments that show that the
result of this theorem indicates a failure of standard quantum mechanics and not
just a peculiarity of the axiomatic approach itself. To make the whole consistent
and self-contained we also reformulate in a precise way Piron’s representation
theorem in axiomatic quantum mechanics.

In standard quantum mechanics with each quantum entity corresponds a com-
plex Hilbert spaceH. A statep (we will denote states by the symbolsp, q, r,. . . ) of
the quantum entity is described by a one-dimensional subspace (ray or unit vector)
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v(p) of H, and an observable by a self-adjoint operator onH (von Neumann,
1932). In particular, a yes/no observableα (we will denote yes/no observables by
the symbolsα, β, γ , . . . ) is represented by an orthogonal projectorP(α) or by the
closed subspaceA(α) which is the range of this projector. The answer “yes” occurs
with certainty (probability equal to 1) for a yes/no observableα, if and only if the
statep of the quantum entity is such thatv(p) ⊂ A(α), whereas the answer “no”
occurs with certainty if and only ifv(p) ⊂ A(α)⊥. Standard quantum mechanics
focuses its description on the level of the mathematical structure of the Hilbert
space. In 1936 Birkhoff and von Neumann introduced another level of description
by focusing not on the structure of the Hilbert space itself, but on the structure of
the setP(H) of closed subspaces of this Hilbert space, where each closed subspace
A(α) εP(H) is interpreted as the “logical” proposition related to the yes/no exper-
imentα. Birkhoff and von Neumann’s aim was to point out that the mathematical
structure of the set of quantum propositionsP(H) is not that of a Boolean algebra,
as is the case for the set of propositions corresponding to a classical mechanics
entity. This focus gave birth to the research field called “quantum logic,” as the
study of the logical and mathematical properties of the set of propositionsP(H).
More specifically Birkhoff and von Neumann remarked that it is the distributive
law between conjunction and disjunction which is not necessarily valid in quantum
logic while it is obviously valid on classical logic.

Although the problems of “quantum logic” in itself are very interesting,
Birkhoff and von Neumann, by shifting the attention toP(H) instead ofH, in-
troduced two other profound advantages. First of all the possibility to build an
operational approach to quantum mechanics, because indeed the elements that
give rise toP(H) are yes/no experiments, which are operational elements, com-
pared to the elements that give rise toH itself. And secondly, equally important,
the fact that on the level ofP(H) quantum entities and classical entities can be
described within one and the same mathematical category, which is not at all
the case on the level of the state spaces (H in the case of quantum mechan-
ics and the phase space in the case of classical mechanics). During the years
that followed step by step it became clear what this for quantum entities and
classical entities “common” mathematical category was. A big step ahead was
taken by the work of George Mackey immediately followed by the representa-
tion theorem of Constantin Piron. Mackey put forward a scheme where one starts
from the set of yes/no experimentsQ and then formulates axioms on it to ar-
rive at the standard mechanical case whereQ is related in the way explained
to P(H), the set of closed subspaces of a complex Hilbert spaceH (Mackey,
1963), and Piron puts forward a set of axioms that “almost” do the job of bring-
ing back the general framework to standard quantum mechanics (Piron, 1964,
1976). Piron’s scheme was worked out over the years into a full operational ap-
proach (Aerts, 1981, 1982a, 1983a,b), and the mathematical category that carries
this approach was identified in detail (Aerts, 1999a,b, 2002a; Aertset al., 1999),
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and called the category of “state property systems and their morphisms,” denoted
asSP.

2. STATE PROPERTY SYSTEMS, QUANTUM
AND CLASSICAL MECHANICS

In this section we present the way in which we arrive at the structure of a
state property system, and how such a state property system, plus the necessary
axioms, gives rise to the case of standard quantum mechanics, but also to the case
of classical mechanics. For a detailed exposition we refer to Aertset al. (1999)
and Aerts (2002a).

2.1. State Property Systems

We start by considering two operationally defined sets, the set of states of the
physical entity, denoted by6 = {p, q, r, . . .}, and the set of yes/no experiments
on the physical entity, denoted byQ = {α, β, γ , . . .}, and a relation on6 × Q,
denotedpCα, expressing the physical law: “the yes/no experimentα ∈ Q gives
with certainty (probability equal to 1) the outcome ‘yes’ if the physical entity
is in statep ∈ 6.” Two yes/no experimentsα, β ∈ Q are said to be equivalent,
and this is denoted asα ≈ β, iff ∀p ∈ 6: pCα⇔pCβ. Then the operational
concept of “property” related to (or tested by) a yes/no experimentα is introduced
as the equivalence class for the equivalence relation≈ of all yes/no experiments
that test this propertya. That the yes/no experimentsα tests the propertya is
denoted byα ∈ a, and obviously we have that ifα ∈ a andβ ≈ α, thenβ ∈ a,
sincea is mathematically the class of yes/no experiments equivalent toα. The
set of properties of the physical entity under consideration is denoted byL. The
relationC on6 × Q can be easily defined on6 × L, and forp ∈ 6 anda ∈ L,
pCa means now, “the propertya is actual if the physical entity is in statep.”
Hence with other words, a propertya is “actual” iff each yes/no experiment of its
equivalence class gives with certainty the outcome “yes.” Additionally to6 andL
we introduce a mapκ: L→ P(6), called the Cartan map, such that fora ∈ L we
have∗κ(a) = {p | p ∈ 6, pCa}∗ + κ(a) = {p ∈ 6 | pCa}+. Henceκ(a) is the
set of all states of the physical entity that make a actual. This makes it possible to
introduce a relation of “implication,” denoted< , on the set of properties defined
as follows: fora, b ∈ L we havea < b iff κ(a) ⊂ κ(b). Hencea < b means that
whenever the propertya is actual for the physical entity then also the propertyb is
actual. It can easily be checked that< is a partial order relation onL. It can also be
proven purely from the operational structure, hence without the necessity of any
axioms, that the set of propertiesL of the physical entity is a complete lattice for
this partial order relation (see, for example, Aertset al., 1999).

We have now all the material available to define what is the state property
system related to the physical entity under consideration. The state property system
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is the triplet (6, L, κ), where6 is a set that plays the role of the set of states of
the entity,L is a complete lattice that plays the role of the set of properties, andκ:
L→ P(6) is a one-to-one or injective function that plays the role of the Cartan
map. We also have for{ai } ∈ L and I the maximal element and 0 the minimal
element of the complete latticeL that:

κ(∧i ai ) = ∩i κ (ai ) (1)

κ(I ) = 6 (2)

κ(0) = ∅ (3)

where∧i ai is the meet of the set{ai } in the complete latticeL.
Suppose we consider two state property systems (6, L, κ) and (6′, L′, κ ′).

The morphisms of the categorySPhave been derived from a general covariance
principle (Aerts, 1999a,b; Aertset al., 1999), i.e., a morphism is a couple (m, n),
wherem is a map from6′ to6, andn a map fromL toL′, such that

m(p′) ∈ κ(a)⇔p′ ∈ κ ′(n(a)) (4)

Let us see how standard quantum mechanics as well as classical mechanics
can both be fitted into this scheme. For standard quantum mechanics,6 is the set
of rays of the Hilbert spaceH andL the set of closed subspacesP(H ). The Cartan
map maps each closed subspace on the set of rays that are contained in this closed
subspace, and indeed (1), (2), and (3) are satisfied. For the classical case,6 is the
phase spaceÄ andL is the set of subsetsP(Ä) of the phase space. The Cartan
map is the identity.

We give now an account of how additional axioms can be formulated such that
the general operational formalism of state property systems leads to the quantum
mechanics and classical mechanics.

2.2. The Axioms

A physical entityS is described by its state-property system (6, L, κ), where
6 is a set, its elements representing the states ofS, L is a complete lattice, its
elements representing the properties ofS, andκ is a one-to-one map fromL
to P(6), satisfying (1), (2), and (3), and expressing the physical situation: “The
propertya ∈ L is actual if the entityS is in statep ∈ 6” by p ∈ κ(a). This is the
structure that we derive from only operational aspects of the approach. The first
axiom that we introduce consists in demanding that a state is determined by the
set of properties that are actual in this state.

Axiom 1(State Determination). Forp ∈ 6 we have that∧
p∈κ(a)

a =
∧

q∈κ(b)

b (5)

we havep = q.
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We remark that in Piron (1964, 1976), and Aerts (1981, 1982a, 1983a,b) this
axiom is considered to be satisfied a priori. It was only later that we became aware
of the fact that “state determination” demands an axiom and cannot be derived from
the operational content of the theory. The second axiom consists in demanding that
the states can be considered as atoms of the property lattice, where an atom of a
lattice is the smallest element of this lattice different from the minimal element 0.

Axiom 2(Atomisticity). For p ∈ 6 we have that

s(p) =
∧

p∈κ(b)

a (6)

is an atom ofL.

Obviously these two axioms are satisfied for the two examples, classical mechanics
(Ä, P(Ä), κ) and quantum mechanics (6, P(H), κ), that we considered. From
Axioms 1 and 2, it follows thatL is atomistic and thats is a bijection from6 to
the set of atoms ofL.

For the third axiom it is already very difficult to give a complete physical
interpretation. This third axiom introduces the structure of an orthocomplemen-
tation for the lattice of properties. At first sight the orthocomplementation could
be seen as a structure that plays a similar role for properties as the negation in
logic plays for propositions. But that is not a very careful way of looking at things.
We cannot go into the details of the attempts that have been made to interpret
the orthocomplementation in a physical way, and refer to Piron (1976, 1990) and
Aerts (1981, 1982a, 1983a) for those that are interested in this problem. Also in
Valckenborgh (2000, 2001), Durt and D’Hooghe (2002), Aerts (2002b), and Aerts
and Deses (2003) this problem is considered in depth.

Axiom 3(Orthocomplementation). The latticeL of properties of the physical entity
under study is orthocomplemented. This means that there exists a function’:L→
L such that fora, b ∈ L we have

(a′)′ = a (7)

a < b⇒ b′ < a ′ (8)

a ∧ a′ = 0 and a ∨ a′ = 1 (9)

For P(Ä) the orthocomplement of a subset is given by the complement of this
subset, and forP(H) the orthocomplement of a closed subspace is given by the
subspace orthogonal to this closed subspace.

The next two axioms are called the covering law and orthomodularity. There
is no obvious physical interpretation for them. They have been put forward mainly
because they are satisfied in the lattice of closed subspaces of a complex Hilbert
space.
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Axiom 4(Covering Law). The latticeL of properties of the physical entity under
study satisfies the covering law. This means that fora, x ∈ L andp ∈ 6 we have

a < x < a ∨ s(p)⇒ x = a orx = a ∨ s(p) (10)

Axiom 5(Orthomodularity). The orthocomplemented latticeL of properties of the
physical entity under study is orthomodular. This means that fora, b ∈ Lwe have

a < b⇒ (b∧ a′) ∨ a = b (11)

These are the five axioms of standard quantum axiomatic. It can be shown that both
axioms, the covering law and orthomodularity, are satisfied for the two examples
P(Ä) andP(H) (Piron, 1964, 1976).

The two examples that we have mentioned show that both classical entities
and quantum entities can be described by the common structure of a state property
system satisfying Axioms 1, 2, 3, 4, and 5. Now we have to consider the converse,
namely how this structure leads us to classical physics and to quantum physics.

2.3. The Representation Theorem

First we show how the classical and nonclassical parts can be extracted from
the general structure, and second we show how the nonclassical parts can be
represented by so-called generalized Hilbert spaces.

Since both examplesP(Ä) andP(H) satisfy the five axioms, it is clear that a
theory where the five axioms are satisfied can give rise to a classical theory, as well
as to a quantum theory. It is possible to filter out the classical part by introducing
the notions of classical property and classical state. Suppose that (6, L, κ) is the
state property system representing a physical entity, satisfying Axioms 1, 2, and
3. We say that a propertya ∈ L is a classical property if for allp ∈ 6 we have

p ∈ κ(a) or p ∈ κ(a′) (12)

We denote the set of all classical properties byC. For p ∈ 6 we introduce

ω(p) =
∧

p∈κ(a),a∈C
a (13)

κc = {ω(p) | p ∈ κ(a)} (14)

and callω(p) the classical state of the physical entity whenever it is in a state
p ∈ 6, andκc the classical Cartan map. The set of all classical states will be
denoted byÄ. The classical state property system corresponding with (6, L, κ) is
(Ä, C, κc).

Again considering our two examples, it is easy to see that for the quantum
case, hence forL = P(H), we have no nontrivial classical properties. Indeed,
for any closed subspaceA ∈ H, different from 0 andH, we have rays ofH that
are neither contained inA nor contained inA′. These are exactly the rays that
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correspond to states that are superposition states of states inA and states inA′. It is
the superposition principle in standard quantum mechanics that makes that the only
classical properties of a quantum entity are the trivial ones, represented by 0 andH.
It can also easily be seen that for the case of a classical entity, described byP(Ä),
all the properties are classical properties. Indeed, consider an arbitrary property
A ∈ P(Ä), then for any singleton{p} ⊂ Ä representing a state of the classical
entity, we have{p} ⊂ A or {p} ⊂ A′, sinceA′ is the set theoretical complement of
A. Since for the quantum case we have only two classical properties, namely 0 and
H, it means that there is only one classical state, namelyH. It is the classical state
that corresponds to “considering the quantum entity under study” and the state
does not specify anything more than that. For the classical case, every state is a
classical state It can be proven thatκc : C → P(Ä) is an isomorphism (Aerts, 1981,
1983a). This means that if we filter out the classical part and limit the description
of our general physical entity to its classical properties and classical states, the
description becomes a standard classical physical description.

Let us filter out the nonclassical part. Forω ∈ Ä we introduce

Lω = {a ∈ L |a < ω} (15)

6ω = {p ∈ 6|p ∈ κ(ω)} (16)

κω(a) = κ(a) for a ∈ Lω (17)

and we call (6ω, Lω, κω) the nonclassical components of (6, L, κ).
For the quantum case, henceL = P(H), we have only one classical state

H, and obviouslyLH = L. Similarly we have6H = 6. This means that the
only nonclassical component is (6, L, κ) itself. For the classical case, since all
properties are classical properties and all states are classical states, we have
Lω = {0,ω}, which is the trivial lattice, containing only its minimal and maxi-
mal element, and6ω = {ω} This means that the nonclassical components are all
trivial.

For the general situation of a physical entity described by (6, L, κ) it can be
shown thatLω contains no classical properties with respect to6ω except 0 andω,
the minimal and maximal element ofLω, and that if (6, L, κ) satisfies Axioms 1,
2, 3, 4, and 5, then also (6ω, Lω, κω)∀ω ∈ Ä satisfy Axioms 1, 2, 3, 4, and 5 (see
Aerts, 1981, 1983a).

It is not difficult to verify that, under the assumption of Axioms 1 and 2,
s : 6→ 6L (as defined in (6)) is a well-defined mapping that is one-to-one and
onto,6L being the collection of all atoms inL. Moreover,p ∈ κ(a) iff s(p) < a.
We can calls(p) the property state corresponding top and define

6′ = {s(p)|p ∈ 6} (18)
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the set of property states. It is easy to verify that if we introduce

κ ′ : L→ P (6′) (19)

where

κ ′(a) = {s(p) | p ∈ κ(a)} (20)

then (
6′, L, κ ′

) ∼= (6, L, κ) (21)

when Axioms 1 and 2 are satisfied.
To see in more detail in which way the classical and nonclassical parts are

structured within the latticeL, we make use of this isomorphism and introduce the
direct union of a set of complete, atomistic, orthocomplemented lattices, making
use of this identification. Consider a set{Lωv |ω ∈ Ä} of complete, atomistic
orthocomplemented lattices. The direct union©v ω∈ÄLω of these lattices consists
of the sequencesa = (aω)ω, such that

(aω)ω < (bω)ω ⇔ aω < bω∀ω ∈ Ä (22)

(aω)ω ∧ (bω)ω = (aω ∧ bω)ω (23)

(aω)ω ∨ (bω)ω = (aω ∨ bω)ω (24)

(aω)
′
ω =

(
a′ω
)
ω

(25)

The atoms of©v ω∈ÄLω are of the form (aω)ω whereaω1 = p for someω1 and
p ∈ 6ω1, andaω = 0 for ω 6= ω1. It can be shown easily that ifLω are complete,
atomistic, orthocomplemented lattices, then also©v ω∈ÄLω is a complete, atomistic,
orthocomplemented lattice (see for instance Aerts, 1981, 1983a).

The structure of direct union of complete, atomistic, orthocomplemented
lattices makes it possible to define the direct union of state property systems
in the case Axioms 1, 2, and 3 are satisfied. Consider a set of state property
systems (6ω, Lω, κω), whereLω are complete, atomistic, orthocomplemented
lattices and for eachω we have that6ω is the set of atoms ofLω. The direct
union©v ω(6ω, Lω, κω) of these state property systems is the state property system
(∪ω6ω,©v ωLω,©v ωκω), where∩ω6ω is the disjoint union of the sets6ω,©v ωLω
is the direct union of the latticesLω, and

©v ωκω ((aω)ω) = ∪ωκω (aω) (26)

The first part of a fundamental representation theorem can now be stated. For this
part it is sufficient that Axioms 1, 2, and 3 are satisfied.

Theorem 2.1. (Representation Theorem: Part 1). We consider a physical entity
described by its state property system (6, L, κ). Suppose that Axioms 1, 2, and 3
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are satisfied. Then

(6, L, κ) ∼= ©v ω∈Ä(6′ω, Lω, κ ′ω) (27)

whereÄ is the set of classical states of (6, L, κ),6′ω is the set of state properties,
κ ′ω the corresponding Cartan map, (see(18) and (20)), and Lω the lattice of
properties of the nonclassical component (6ω, Lω, κω). If Axioms 4 and 5 are
satisfied for (6, L, κ), then they are also satisfied for (6′ω, Lω, κ ′ω) for all ω ∈ Ä.

Proof: See Aerts (1981) and Aerts (1983a). ¤

From the previous section it follows that if Axioms 1, 2, 3, 4, and 5 are
satisfied we can write the state property system (6, L, κ) of the physical entity
under study as the direct union©v ω∈Ä(6′ω, Lω, κ ′ω) over its classical state spaceÄ
of its nonclassical components (6′ω, Lω, κ ′ω), and that each of these nonclassical
components also satisfies Axioms 1, 2, 3, 4, and 5. Additionally for each one
of these nonclassical components (6′ω, Lω, κ ′ω) no classical properties except 0
andω exist. It is for these nonclassical components that a further representation
theorem can be proven such that a vector space structure emerges for each one
of the nonclassical components. To do this we rely on the original representation
theorem proved in Piron (1964).

Theorem 2.2. (Representation Theorem: Part 2). Consider the same situation
as in Theorem 1, with additionally Axioms 4 and 5 satisfied. For each nonclassical
component(6′ω, Lω, κ ′ω), of which the latticeLω is of rank greater than or equal
to four, there exists a generalized Hilbert space, that is a vector space Vω, over a
division ring Kω, with an involution of Kω, which means a function

∗ : Kω → Kω (28)

such that for k, l∈ Kω we have:

(k∗)∗ = k (29)

(k · l )∗ = l ∗ · k∗ (30)

and an Hermitian product on Vω, which means a function

〈 , 〉 : Vω × Vω → Kω (31)

such that for x, y, z∈ Vω and k∈ Kω we have:

〈x + ky, z〉 = 〈x, z〉 + k〈x, y〉 (32)

〈x, y〉∗ = 〈y, x〉 (33)

〈x, x〉 = 0⇔ x = 0 (34)
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and such that for M⊂ Vω we have

M⊥ + (M⊥)⊥ = Vω (35)

where M⊥ = {y | y ∈ Vω, 〈y, x〉 = 0,∀x ∈ M} and∗such a vector space is called
a generalized Hilbert space or an orthomodular vector space. And we have that:∗

(6′ω, Lω, κ ′ω) ∼= (R(V), P(V), ν) (36)

whereR(V) is the set of rays of V ,P(V) is the set of biorthogonally closed sub-
spaces (subspaces that are equal to their biorthogonal) of V , andν makes corre-
spond with each such biorthogonal subspace the set of rays that are contained in
it.

Proof: See Piron (1964) and Piron (1976). ¤

The name “generalized Hilbert space” was introduced, because it can be
shown that if the division ringKω is taken to be the real or complex numbers, or
the quaternions, then the generalized Hilbert space becomes a Hilbert space.

3. THE FAILING AXIOMS OF STANDARD QUANTUM MECHANICS

We have introduced all that is necessary to be able to put forward the theo-
rem that has been proved regarding the failing mathematical structure of standard
quantum mechanics for the description of the joint entity consisting of two sepa-
rated quantum entities (Aerts, 1981, 1982a). Let us first explain what is meant by
separated physical entities.

3.1. What Are Separated Physical Entities?

We consider the situation of a physical entityS that consists of two physical
entitiesS1 andS2. The definition of “separated” that has been used in Aerts (1981)
and Aerts (1982a) is the following. Suppose that we consider two experimentse1

ande2 that can be performed respectively on the entityS1 and on the entityS2,
such that the joint experimentse1× e2 can be performed on the joint entityScon-
sisting ofS1 andS2. We say that experimentse1 ande2 are separated experiments
whenever for an arbitrary statep of Swe have that (x1, x2) is a possible outcome
for experimente1 × e2 if and only if x1 is a possible outcome fore1 andx2 is a
possible outcome fore2. We say thatS1 andS2 are separated entities if and only if
all the experimentse1 on S1 are separated from the experimentse2 on S2.

Let us remark thatS1 andS2 being separated does not mean that there is no
interaction betweenS1 andS2. Most entities in the macroscopic world are separated
entities. Let us consider some examples to make this clear. The earth and the moon,
for example, are separated entities. Indeed, consider any experimente1 that can be
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performed on the physical entity earth (for example measuring its position), and
any experimente2 that can be performed on the physical entity moon (for example
measuring its velocity). The joint experimente1 × e2 consists of performinge1

ande2 together on the joint entity of earth and moon (measuring the position of
the earth and the velocity of the moon at once). Obviously the requirement of
separation is satisfied. The pair (x1, x2) (position of the earth and velocity of the
moon) is a possible outcome fore1 × e2 if and only if x1 (position of the earth) is
a possible outcome ofe1 andx2 (velocity of the moon) is a possible outcome of
e2. This is what we mean when we say that the earth has positionx1 and the moon
velocity x2 at once. Clearly this is independent of whether there is an interaction,
the gravitational interaction in this case, between the earth and the moon.

It is not easy to find an example of two physical entities that are not separated
in the macroscopic world, because usually nonseparated entities are described as
one entity and not as two. In earlier work we have given examples of nonseparated
macroscopic entities (Aerts, 1982b, 1984, 1988). The example of connected vessels
of water is a good example to give an intuitive idea of what nonseparation means.
Consider two vesselsV1 andV2 each containing 10 L of water. The vessels are
connected by a tube, which means that they form a connected set of vessels. Also
the tube contains some water, but this does not play any role for what we want to
show. Experimente1 consists of taking out water of vesselV1 by a siphon, and
measuring the amount of water that comes out. We give the outcomex1 if the
amount of water coming out is greater than 10 L. Experimente2 consists of doing
exactly the same on vesselV2. We give outcomex2 to e2 if the amount of water
coming out is greater than 10 L. The joint experimente1×e2 consists of performing
e1 ande2 together on the joint entity of the two connected vessels of water. Because
of the connection, and the physical principles that govern connected vessels, fore1

and fore2 performed alone we find 20 L of water coming out. This means thatx1 is
a possible (even certain) outcome fore1 andx2 is a possible (also certain) outcome
for e2. If we perform the joint experimente1 × e2 the following happens. If there
is more than 10 L coming out of vesselV1 there is less than 10 L coming out of
vesselV2 and if there is more than 10 L coming out of vesselV2 there is less than
10 L coming out of vesselV1. This means that (x1, x2) is not a possible outcome
for the joint experimente1 × e2. Hencee1 ande2 are nonseparated experiments
and as a consequenceV1 andV2 are nonseparated entities.

The nonseparated entities that we find in the macroscopic world are entities
that are very similar to the connected vessels of water. There must be an ontological
connection between the two entities, and that is also the reason that usually the
joint entity will be treated as one entity again. A connection through dynamic
interaction, as is the case between the earth and the moon, interacting by gravitation,
leaves the entities separated. For quantum entities it can be shown that only when
the joint entity of two quantum entities contains entangled states the entities are
nonseparated quantum entities. It can be proven (Aerts, 1982b, 1984, 1988) that
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experiments are separated if and only if they do not violate Bell’s inequalities. All
this has been explored and investigated in many ways, and several papers have
been published on the matter (Aerts, 1982b, 1984, 1985, 1988, 1990; Christiaens,
2002).

3.2. The Separated Quantum Entities Theorem

We are ready now to state the theorem about the impossibility for stan-
dard quantum mechanics to describe separated quantum entities (Aerts, 1981,
1982a).

Theorem 3.3. (Separated Quantum Entities Theorem). Suppose that S is a phys-
ical entity consisting of two separated physical entities S1 and S2. Let us suppose
that Axioms 1, 2, and 3 are satisfied and call (6, L, κ) the state property system
describing S, and (61, L1, κ1) and (62, L2, κ2) the state property systems describ-
ing S1 and S2. If the fourth axiom is satisfied, namely the covering law, then one
of the two entities S1 or S2 is a classical entity, in the sense that one of the two
state property systems (61, L1, κ1) or (62, L2, κ2) contains only classical states
and classical properties. If the fifth axiom is satisfied, namely weak modularity,
then one of the two entities S1 or S2 is a classical entity, in the sense that one of
the two state property systems (61, L1, κ1) or (62, L2, κ2) contains only classical
states and classical properties.

Proof: See Aerts 1981, 1982a. ¤

The theorem proves that two separated quantum entities cannot be described by
standard quantum mechanics.

A classical entity that is separated from a quantum entity and two separated
classical entities do not cause any problem, but two separated quantum entities
need a structure where neither the covering law nor weak modularity are satisfied.

One of the possible ways out is that there would not exist separated quantum
entities in nature. This would mean that all quantum entities are entangled in some
way or another. If this is true, perhaps the standard formalism could be saved. Let
us remark that even standard quantum mechanics presupposes the existence of
separated quantum entities. Indeed, if we describe one quantum entity by means
of the standard formalism, we take one Hilbert space to represent the states of this
entity. In this sense we suppose the rest of the universe to be separated from this
one quantum entity. If not, we would have to modify the description and consider
two Hilbert spaces, one for the entity and one for the rest of the universe, and the
states would be entangled states of the states of the entity and the states of the
rest of the universe. But, this would mean that the one quantum entity that we
considered is never in a well-defined state.
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It would mean that the only possibility that remains is to describe the whole
universe at once by using one huge Hilbert space. It goes without saying that
such an approach will lead to many other problems. Another, more down to earth
problem is, that in this one Hilbert space of the whole universe also all classical
macroscopical entities have to be described. But classical entities are not described
by a Hilbert space. If the hypothesis that we can only describe the whole universe
at once is correct, it would anyhow be more plausible that the theory that does
deliver such a description would be the direct union structure of different Hilbert
spaces. But if this is the case, we anyhow are already using a more general theory
than standard quantum mechanics. So we can as well use the still slightly more
general theory, where Axioms 4 and 5 are not satisfied, and make the description
of separated quantum entities possible.

All this convinces us that the shortcoming of standard quantum mechan-
ics to be able to describe separated quantum entities is really a shortcoming of
the mathematical formalism used by standard quantum mechanics, and more no-
tably of the vector space structure of the Hilbert space used in standard quantum
mechanics.
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